
J. Fluid Mech. (2008), vol. 605, pp. 389–400. c© 2008 Cambridge University Press

doi:10.1017/S0022112008001560 Printed in the United Kingdom

389

On the inviscid stability of bi-layer
axisymmetric coatings

P. A. BLYTHE1 AND P. G. S IMPKINS2

1Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA 18015, USA
2College of Engineering, Syracuse University, Syracuse, NY 13244, USA

(Received 10 May 2007 and in revised form 17 March 2008)

This paper is concerned with the stability of fibre coatings at large Reynolds numbers.
Both single- and double-layer coatings are considered; no restriction is placed on the
coating thicknesses. Calculations for the maximum growth rate, together with the
corresponding length scale of the instability, are presented. Rescaling with respect to
the maximum growth rate generates universal dispersion relations over the unstable
wavenumber range. For double-layer composite coatings, modifications are required
when the density ratio becomes large.

1. Introduction
Liquid coatings are often applied to wires and fibres for insulation, protection

and identification. During production, these coatings are susceptible to Rayleigh
instabilities that can result in undesirable beading or diameter variations. In practice,
the amplitudes of these disturbances are limited by solidifying the coating, either
thermally or photo-chemically, prior to significant growth of the instability. Two-layer
coatings are of particular relevance to optical fibres for which soft inner coatings and
hard outer coatings are used. The inner coating minimizes micro-bending losses in the
silica which affect the transmission quality of the signal; the outer coating protects
the fibre integrity. Current indications are that future coating technologies will occur
at higher Reynolds numbers so that viscous effects may play a smaller role. Many
of the manufacturing techniques are designed to produce coatings whose thickness
is comparable with the fiber radius. This paper is concerned with bi-layer coating
instabilities in the inviscid limit when the Reynolds number is large. No restrictions
on coating thicknesses are made.

Many of the earlier studies of coating flows have used the lubrication limit (see e.g.
Landau & Levich 1942). A review of steady two-dimensional flows has been given
by Weinstein & Ruschak (2004). Corresponding steady axially symmetric flows were
considered by Bretherton (1961), and stability questions were examined, e.g. by Goren
(1962) and Hammond (1983). Extensions to steady flows in which both axial and
azimuthal curvature terms are important were made by Blythe & Simpkins (1995,
2004) and by Darhuber et al. (2000). Non-axially symmetric effects were discussed by
Xu & Davis (1985) and by Russo & Steen (1989), and a general three-dimensional
analysis has been developed by Ida & Miksis (1998a,b). Multi-layer films on inclined
planes have been discussed, for example, by Wang, Seaborg & Lin (1978). Specific
results for the stability of a three-layer film flow were obtained by Weinstein & Chen
(1999). Recent work on polymeric bi-layer films has been presented by Jiang et al.
(2006).
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As noted above, increases in coating speeds, and the employment of metallic or
similar coating materials, suggest the need for analyses with Re � 1 as opposed
to lubrication theory. An outline of the single-layer inviscid theory can be found
in Middleman (1995). In the present paper, it is demonstrated that the single-layer
results for different coating thicknesses can be collapsed onto what is effectively a
universal curve by employing a growth rate scaled with respect to its maximum value.
Apparently, this result has not been previously recognized; it is a consequence of the
small variation of the maximum growth wavenumber with thickness.

Much of the analysis in this paper addresses composite double-layer inviscid coating
flows. No restrictions are placed on the relative thickness of the layers or on the density
ratio of the coating fluids. Surface tension is included at the coating–air interface, but
neglected elsewhere (see Weinstein & Chen 2004). Some industrial data indicate that
this is a satisfactory assumption for certain immiscible materials that are soluble only
in ketones. Under these conditions, the single-layer scaling argument can be extended
to composite coatings. By normalizing the growth rate with respect to its maximum
value, a remarkable collapse of the data is again obtained provided that the density
ratio (outer/inner) is not large. The scaling law can be deduced from either physical
reasoning or analytical arguments.

Appropriate non-dimensional forms of the linearized stability equations and their
solution are presented in § 2, and the dispersion relation is derived. Numerical results
for the growth rate of single-layer coatings are examined in § 3, where a determination
of the maximum growth rate, including the corresponding instability length scale,
is made. Simplified results for thin and thick coatings are also briefly described.
Double-layer coatings are considered in § 4, where thickness and density ratio effects
are discussed. Limiting cases for large density ratios and thin coatings require a
special analysis. Asymptotic results for the growth rate in these limits are derived in
the Appendix and a comparison with numerical calculations is given.

2. Formulation and the dispersion relations
After taking into account the relevant boundary conditions, the stability of an

inviscid incompressible two-layer coating on a cylinder can be analysed in the manner
described by Rayleigh (see Drazin & Reid 1982). Using cylindrical polar coordinates
in a reference frame moving with the fiber, the base state is given by the steady
constant thickness solution

wj = uj = 0, �Pi = �Po = 1, ro = 1 (ri = const. < 1), (2.1)

where j = i for the inner coating and j = o for the outer coating. In (2.1), which
also represents a solution of the viscous equations, (u, w) are the dimensionless
velocity components in the radial and axial (r, z) directions. The velocities are made
dimensionless with respect to the capillary speed Wc =

√
σ ′/ρ ′

oH
′
∞, the lengths with

respect to the final combined coating radius H ′
∞, the pressure difference �Pj with

respect to σ ′/H ′
∞, and the time t using H ′

∞/Wc. Here, σ ′ is the surface tension, and
�Pj = Pj − Pa where Pa denotes the external (fixed) atmospheric pressure. At the
fibre surface

ui = 0 on r = rf (≡ r ′
f /H ′

∞). (2.2)

On the interface, surface tension is neglected so that

Pi = Po on r = ri . (2.3)
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At the interface and the free surface, the kinematic conditions are

uj =
∂rj

∂t
+ wj

∂rj

∂z
. (2.4)

Surface tension is included at the free surface, where the normal stress balance
becomes

�Po = Po − Pa =
1

ro(1 + (∂ro/∂z)2)1/2
− ∂2ro/∂z2

(1 + (∂ro/∂z)2)3/2
. (2.5)

Linearized perturbations about this constant state, with

�Pj = 1 + pj , �rj = hj , (2.6)

are taken to be of the axially symmetric form[
uj , wj , pj , hj

]
=

[
ūj (r), w̄j (r), p̄j (r), h̄j

]
exp(αt + ikz). (2.7)

(It can be shown that weak asymmetric disturbances are neutrally stable.) The
amplitude of the pressure perturbation p̄ satisfies Bessel’s equation

r2 d2p̄

dr2
+ r

dp̄

dr
− k2r2p̄ = 0, (2.8)

for which the solution, in each layer, is

p̄ = AjI0(ζ ) + BjK0(ζ ) (2.9)

with

w̄ = − ik

α
ρ̄j {AjI0(ζ ) + BjK0(ζ )}, ū = − k

α
ρ̄j {AjI1(ζ ) − BjK1(ζ )}, (2.10)

where In(ζ ) and Kn(ζ ) are modified Bessel functions, ζ = kr and ρ̄j = ρ ′
o/ρ

′
j . The

boundary and interface conditions (2.2)–(2.5) require that

ūi(rf ) = 0, ūi(ri) = αh̄i = ūo(ri), p̄i(ri) = p̄o(ri), (2.11)

ūo(1) = αh̄o, p̄o(1) = −(1 − k2)h̄o. (2.12)

Manipulations based on these conditions lead to

α2

k(1 − k2)
= N =

D1(ζf , k) + (1 − ρ̄)ζiD1(ζi, ζf )S(ζi, k)

S(k, ζf ) − (1 − ρ̄)ζiD1(ζi, ζf )D0(k, ζi)
, (2.13)

where ρ̄ = ρo/ρi, ζi = kri and ζf = krf . In (2.13)

S(x, y) = K0(x)I1(y) + K1(y)I0(x), (2.14)

Dn(x, y) = Kn(x)In(y) − Kn(y)In(x). (2.15)

Equation (2.13), and the ancillary expressions (2.14) and (2.15), represent the
dispersion relation for the stability of the bi-layer coating flow.

3. Single-layer behaviour
When the density ratio ρ̄ = 1, (2.13) reduces to

N ≡ α2

k(1 − k2)
=

D1(ζf , k)

S(k, ζf )
=

K1(ζf )I1(k) − K1(k)I1(ζf )

K0(k)I1(ζf ) + K1(ζf )I0(k)
, (3.1)
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Figure 1. Growth rates normalized by αm. The inset shows the modified growth rate
dependence on rf (lines are, from the top, rf = 0, 0.33, 0.5, 0.67, 0.8).

which is the single-layer result (see e.g. Middleman 1995). Standard results for this
case are briefly reviewed below.

For thin coatings (1 − rf � 1) it can be shown that

α2 = k2(1 − k2)(1 − rf ), (3.2)

and only wavenumbers with |k| < 1 are unstable. The maximum growth rate arises
when k2 = k2

m = 1/2. Similarly, for thick coatings (rf → 0), (3.1) gives

α2 = k(1 − k2)
I1(k)

I0(k)
. (3.3)

This result is equivalent to that for an inviscid liquid jet (see Middleman 1995).
Again, only wavenumbers with |k| < 1 are unstable, but now the maximum growth

rate occurs at km ≈ 0.6970, i.e. close to the zero thickness limit 1/
√

2 ≈ 0.7071.
For general values of rf , it follows from (3.1) that N > 0 for |k| < 1, and

unstable disturbances arise only when |k| < 1. The current linear theory indicates that
disturbances with |k| > 1 are neutrally stable. Growth rates for various fibre radii
rf are shown in figure 1 (inset). As observed above, there is little variation in the
wavenumbers km that correspond to the maximum growth rate. In fact, replotting the
data after normalizing with respect to the maximum α for a specific rf , i.e. α = αm(rf ),
gives the result shown in figure 1.

As can be seen, this simple scaling essentially leads to a universal curve, and was
noted by Blythe & Simpkins (2002). The small variation in the value of k = km,
corresponding to αm(rf ), is shown in figure 2, where the change in km is less than
1.5% over the entire range of rf . Results for αm(rf ) are discussed below in § 4.
Collapsing the dispersion curves in this way has not been previously observed.
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Figure 2. Wavenumbers at αm for various values of rf .

4. Bi-layer results
4.1. Variable thickness effects

Double-layer stability results depend on the thickness ratio

τ =
ro − ri

ri − rf

, (4.1)

where rf , ri and ro (≡ 1) are, respectively, the dimensionless fiber, interface and
outer radii. The dispersion relation (2.13) is displayed in figure 3 (inset) for different
thickness ratios when rf = 0.5 and ρ̄ = 0.5.

Single-layer results given in § 3 suggest that it is appropriate to normalize the
growth rate by its maximum value αm(rf , τ ). This also effectively collapses the data
onto the single curve shown in figure 3. Similar results arise for various fiber radii rf

at a fixed thickness ratio τ .
Remarkably, both the single-layer results and the bi-layer results collapse in the

manner shown in figure 3. Results for a variety of different values of rf , τ, and ρ̄ are
displayed in this figure. For all data displayed in figure 3, ρ̄ < 10. Each curve is well
represented by the thin single-layer limit (3.2), i.e.

α

αm

= 2k
√

1 − k2. (4.2)

The variation in the maximum growth rate αm with rf is shown in figure 4 for
various thickness ratios τ . For rf = 0, the results correspond to a composite jet.
As τ → ∞ (vanishingly thin inner layer, ri → rf ), the single-layer solution (3.1) is
recovered, and as τ → 0 (thin outer layer, ri → ro), the single-layer result (3.1), now
pre-multiplied by a factor ρ̄, is also obtained. Values obtained from these limiting
cases, including (3.3), are in complete agreement with numerical calculations using
the bi-layer dispersion relation (2.13).
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•, equation (4.5).

All the above results for α/αm are consistent with the universal behaviour shown
in figure 3, which suggests that

αm ∝ gradient at k = 0. (4.3)

From the dispersion relation (2.13), and the limiting results for S and Dn as k → 0, it
can be established that

dα

dk

∣∣∣∣
k=0

=

√
1 − r2

f − (1 − ρ̄)
(
r2
i − r2

f

)
2

. (4.4)
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The scaling postulate (4.3) then implies

αm = m

√
1 − r2

f − (1 − ρ̄)
(
r2
i − r2

f

)
2

. (4.5)

Based on the single-layer results, the constant m is bounded by the thin film and jet
limits. Specifically,

0.48555 � m � 0.5. (4.6)

Comparisons between (4.5) and the numerical calculations are shown in figure 4,
where the mean value of m based on (4.6) is used. Excellent agreement is found. Note
that the results for τ = ∞ correspond to the single-layer solution outlined earlier
in § 3.

The scaling law (4.5) can also be obtained from physical arguments by viewing
the coating layers as fixed control volumes of length L′. Momentum balances in the
z-direction give, for each annulus,

ρ ′
jL

′A′
cj

�w′
j

�t ′ = �P ′A′
cj , (4.7)

where primed variables are dimensional. In (4.7), � denotes the overall change in
the axial direction, and A′

cj is the annulus cross-sectional area. If the axial pressure
difference is the same for both layers, then

ρ ′
i�w′

i = ρ ′
o�w′

o, �t ′ = ρ ′
o

L′�w′
o

�p′ . (4.8)

The free-surface displacement, h′ = r ′ − H ′
∞, gives rise through surface tension to

changes in the normal stress with �p′ = −σ ′c�h′/H ′2
∞ , where c/H ′

∞ corresponds to
the mean curvature. In addition, the kinematic condition on the outer surface requires
that �h′ = u′

o�t ′ where u′
o is the radial velocity component. Consequently, the growth

rate

α′ =
1

�t ′ =

√
cσ ′(−u′

o)

ρ ′
or

′2
o L′�w′

o

. (4.9)

Conservation of volume flow for the two layers requires that

�w′
iA

′
ci + �w′

oA
′
co + 2πH ′

∞L′u′
o = 0. (4.10)

Using the above relations, and introducing the dimensionless variables of § 2, gives

α2 = 1
2

[
1 − r2

f − (1 − ρ̄)
(
r2
i − r2

f

)]
k2(1 − k2), (4.11)

where the choices L′ = H ′
∞/k and c = 1−k2 have been made, and the expression for c

incorporates the second curvature term in the normal stress condition. Equation (4.11)
is consistent with (4.5) when m = 0.5.

4.2. Influence of the density ratio

Although the universal curves are presented for ρ̄ = 0.5, this normalization holds
for density ratios less than about 10. As the density ratio increases, however, the
wavenumber km for maximum growth depends strongly on ρ̄. Figure 5 displays
computations for the dependence of the growth rate on the density ratio. Here, the
results are given for a thickness ratio τ = 1 and a dimensionless fiber radius of 0.5,
but similar trends occur for other values of τ and rf .
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As ρ̄ → 0, it can be deduced from (2.13) that

α2

k(1 − k2)
→ D1(ζf , k) + ζiD1(ζi, ζf )S(ζi, k)

S(k, ζf ) − ζiD1(ζi, ζf )D0(k, ζi)
. (4.12)

The limiting profile defined by (4.12) is shown in figure 5.
For increasing ρ̄, the location of the maximum growth rate approaches k = 0. Away

from k = 0, the limiting profile as ρ̄ → ∞ is given by

α2 = −k(1 − k2)
S(ζi, k)

D0(k, ζi)
. (4.13)

This limiting case is also displayed in figure 5, together with results for intermediate
values of ρ̄. Curves of km(rf ; ρ̄) are given in figure 6, which shows that there is a rapid
variation in km at large ρ̄ as rf → 1. Consequently, the universal scaling presented in
figure 3 is not valid in this limit.

The dependence of the maximum growth rate on rf is shown in figure 7 for various
density ratios. It is apparent from figures 5 to 7 that a different approach is required
for ρ̄ � 1. Details of the behaviour when the density ratio is large are given in the
Appendix.

5. Concluding remarks
For single-layer coatings, it was demonstrated in § 3 that normalizing the growth

rates by their maximum values leads to a universal curve. In § 4, this approach was
extended to bi-layer films. The data for various thickness ratios, and for various fiber
radii, also collapse onto a universal curve when the density ratio ρ̄ < 10. Scaling
arguments and physical considerations both lead to the same prediction for the
maximum growth rate that is in excellent agreement with the full dispersion relation.

At larger values of ρ̄, the instability growth rate is more sensitive to the magnitude
of the density ratio. Numerical results indicate the presence of severe spikes in the
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growth rate when the overall layer thickness is small. Asymptotic results developed
for large density ratios and thin films are in excellent agreement with the numerical
calculations (see Appendix).

Part of this work was carried out while P. G. S. was at Bell Laboratories, Murray
Hill, NJ 07974, USA. The authors are grateful to the referees for helpful comments.
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Appendix. Large density ratio asymptotics
If ρ̄ � 1, the limiting behaviour associated with the large gradients that arise near

k = 0 requires an appropriate boundary-layer description (figure 8). Expanding (2.13)
as k → 0, at fixed ρ̄, τ and rf , suggests that non-uniformities occur when ρ̄ = O(k−2).
Within this boundary layer, an appropriate scaled wavenumber (ρ̄ → ∞) is κ =

√
ρ̄ k.

Using κ and (2.13), it is found that near k = 0

α2 =

(
r2
i − r2

f

)
κ2

2 +
(
r2
i − r2

f

)
ln(1/ri)κ2

, (A1)

which matches with (4.13) as κ → ∞. From (4.13) and (A1) a suitable leading-order
composite solution, valid for 0 � k � 1, can also be constructed. Specifically,

αcomp =

√ (
r2
i − r2

f

)
κ2

2 +
(
r2
i − r2

f

)
ln(1/ri)κ2

+

√
−k(1 − k2)

S(ζi, k)

D0(k, ζi)
−

√
1

ln(1/ri)
. (A2)

Comparisons with the exact solution (2.13) are shown in figure 8.
From figure 7, it can be seen that when ρ̄ � 1 further resolution is required as

rf → 1. A suitable distinguished limit corresponds to thin films with ρ̄(1 − rf )2 =
O(1). For thickness ratios τ = O(1), substitution into (2.13), neglecting relative error
terms O((1 − rf )2), leads to

α2 =

[
1 − 1

2
s(1 − rf )

]
s(1 − rf )

λ̄k2(1 − k2)

1 + λ̄k2
(A3)

where

λ = s(1 − s)ρ̄(1 − rf )2, s = τ/(1 + τ ), λ̄ =
(
1 − 1

2
(1 − rf )

)
λ. (A4)
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From (A3) it is readily established that the wavenumber corresponding to the
maximum growth rate is defined by

k2
m =

√
1 + λ̄ − 1

λ̄
with α2

m =

[
1 − 1

2
s(1 − rf )

]
s(1 − rf )

(2 + λ̄ − 2
√

1 + λ̄)

λ̄
(A5)

A typical plot of αm(rf ), with ρ̄ = 103 and τ = 1, is shown in figure 9. Excellent
agreement with numerical calculations based on the full dispersion relation is found
even at rf = 0.5. When ρ̄ � 1, a feature of these curves is the peak in the maximum
growth rate for rf → 1 (see figure 7). Based on (A5), the leading approximation for

the location of the peak is λ̄ = λ̄ 0 = 3. It follows that the locus of the peak, neglecting
terms O(ρ̄ −3/4), is

αmmax
= 3−3/4

(
1 − s

s

)1/4
(

1 −
√

3

2
ε

)
ρ̄1/4 where ε =

(
1
4

+ 1
2
s
)

√
s(1 − s)

ρ̄−1/2 � 1. (A6)

Values of rf = rf m(ρ̄) that correspond to the peak in the maximum growth rate are
defined by

1 − rfm
=

√
3

s(1 − s)
ρ̄−1/2

{
1 −

(
(1 + 8s)

√
3

12
√

s(1 − s)

)
ρ̄−1/2

}
. (A7)

Predictions from (A6) and (A7) also agree closely with numerical calculations.
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